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Abstract. The finite-size scaling of the free energy levels of Privman and Fisher is tested 
numerically on two-dimensional lattice strips in the k ing  and q = 3 Potts universality. The 
universal amplitudes and the free energy per site are obtained. 

1. Introduction 

Privman and Fisher (1984) have recently argued that the singular part of the free 
energy density of a system with size L (either hypercubical with V =  Ld or cylinder- 
shaped with V = Ld-' x 00) near the critical point t = 0, h = 0 ( t  = ( T  - Tc)/ T J ,  h = 
H/ kBT) and below the upper critical dimension d, may be written as 

f ' " ( t ,  h, L ) =  - F " ' / V k s T z t - d Y ( ~ 1 , ~ 2 )  

x ,  = c, tLY1 x2 = C2hLYh (1.1) 

where Y ( x ,  y )  is a universal function (for cubes and cylinders, respectively); y ,  and 
yh are the thermal and magnetic exponents such that y ,  = l / v  and yh/yr = /3 + y = A. 
The non-universal metric factors C,  and C, enter the scaled variables x, and x2 but 
no further non-universal prefactor is needed. 

On an Ld-' x 00 cylinder built up of Ld-' x 1 slices, the free energy density is given 

(1.2) 

by 

fo( t ,  h, L )  = (1/ ILd-') In A,( t ,  h, L )  

where A, is the largest eigenvalue of the transfer matrix. Free energy levels J;  may be 
defined through 

(1.3) 
where Aj is any one of the subdominant eigenvalues of the transfer matrix A. > A,  a A2 3 
. . . .  At the critical point infinitely many of the eigenvalues A , ( L )  approach A, (L)  
when L-, 00 and the corresponding correlation lengths 

$(r, h, L )  = ( l / I L d - ' )  In AJ(t, h, t) 

5llj(t, h, L )  = ~ [ ~ ~ ( A o / A , ) I - '  (1.4) 
diverge. When j = 1 tilj is the spin-spin correlation length and when j = 2, the energy- 
energy correlation length. A finite-size scaling relation for the correlation lengths may 
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be written in analogy with (1.1) 

S, , , ( t ,  h, L )  = LS,(X, 9 x2). (1.5) 

With the same scaled variables as in (1.1) S,(x, y )  is a universal function. Privman 
and Fisher (1984) then speculate that (1.1) may be generalised for the singular part 
of the lowest free energy levels. Then, one may write 

p(  t, h, L )  = L - d y , ( x , ,  x2) (1.6) 

with y ( x ,  y )  a universal function. 
The singular part of the free energy densities f ; (  t, h, L )  may be defined as 

f:%, h, L )  = f ; ( t ,  h, L ) - f m ( t ,  h )  (1.7) 

where the analytic background &( t ,  h )  must be the same for all the levels in order to 
recover (1.5) from (1.3), (1.4) and (1.6). The scaling functions of the correlation lengths 
S,(x ,  , x,) are then given by 

S,(XI 9 X J  = [ Y O ( X 1 ,  x2) - y , ( X I ,  x2)I- l .  (1.8) 

The universal amplitude of the correlation length at the critical point S,(O, 0) which 
is related to the decay exponent 7, of the corresponding correlation function (Pichard 
and Sarma 1981, Luck 1982, Cardy 1984) has been extensively studied on two- 
dimensional models in recent years. Derrida and de Skze (1982) confirm this relation 
for the percolation problem and mention unpublished results for the q-state Potts 
model when j = 1 (spin-spin correlations). Nightingale and Blote (1983) have per- 
formed a numerical study on various two-dimensional models (eight-vertex, Potts and 
N-component cubic models) for j = 1 and j = 2, looking at the influence of anisotropy. 

In the present work the finite-size scaling of the free energy levels at the critical 
point ( t  = h = 0) is studied numerically on two-dimensional systems which are believed 
to belong either to the Ising or to the Potts q = 3 universality. Although the eigenvalues 
of the transfer matrix of the spin-f Ising model are known on two-dimensional lattices 
in the principal directions (Domb 1960) allowing an exact evaluation of the universal 
amplitudes (see for example Derrida and de Skze (1982) for the square lattice and 
Privman and Fisher (1984) for the honeycomb lattice in the case of the correlation 
length amplitude) we have made a numerical study of the square and triangular spin-f 
Ising models in order to test the extrapolation procedure which is used to extract the 
free energy levels’ universal amplitudes. The numerical results are presented in § 2 
and discussed in § 3. 

2. Numerical results 

We have studied the universal properties of the free energy levels by looking either at 
the lattice universality (i.e. the same model on different lattices) or at  the model 
universality (different models which are believed to belong to the same class of 
universality). Results are presented for the spin-; Ising model on the square and 
triangular lattices, the spin-1 Ising model on the square lattice and the hard square 
lattice gas in the Ising universality and for the q = 3 Potts model on the square and 
triangular lattices and the hard hexagon lattice gas in the q = 3 Potts universality. 

The first three free energy levels at the critical point of the infinite system are 
obtained for strips with size L x m  and periodic boundary conditions through the 
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diagonalisation of the row-to-row transfer matrix sketched in figure 1 for the different 
lattices. According to (1.6) and (1.7), at the critical point, the free energy levels scale 
with L as 

J;( L )  = A,LP2 + B (2.1) 

where A, = y(0,O) is a universal amplitude and B = f,(O, 0) gives the critical value of 
the free energy density in the infinite system. In order to compare the different lattices 
one has to use the same unit length U which has been chosen as 

U = (surface per site)’/*. (2.2) 

A ( L )  is then a free energy per site. Let N be the number of sites in the transverse 
direction on the strip (figure l ) ,  then L = a N  where a is a geometrical constant which 
takes the values a =d, (2&)”’, (&/2)’’2 for the transfer matrices ( a ) ,  (6)  and  ( c )  
respectively. 

For the critical couplings ( K c ,  z , ,  table 1 )  we have used the known exact values 
for the spin-f Ising model (Syozi 1972), the q = 3 Potts model (Wu 1982) and the hard 
hexagon lattice gas (Baxter 1980). The approximate values for the spin-1 k ing  model 
and the hard square lattice gas were taken from Adler and  Enting (1984) and Baxter 
et a1 (1980). 

The first three non-degenerate levels were calculated for strips with width N = 2-8 
for the spin-f Ising model and  the hard square lattice gas, N = 2-5 for the spin-1 Ising 
model and the q = 3 Potts model and N = 2-10 for the first level of the hard hexagon 
lattice gas. In this case only even N values were used in order to satisfy the symmetry 
of the ground state. 

The free energy per site at the critical point B and the universal amplitudes A, 
were estimated by a two-point fit of equation (2.1) for pairs of successive strips 
( N  - 1 ,  N ) .  These values are given in table 2. When possible they were extrapolated 
to infinite width by assuming power law corrections to scaling, through a three-point 
fit of In( G( N - 1 ,  N )  - G,) against In( N ) .  In other cases we used a three-point fit of 
G ( N -  1 ,  N )  against 1/N; the extrapolated values obtained in this way are marked 

ibl (C ) la1 

Figure 1.  Transfer matrix for the square ( a )  and triangular ( b )  lattices and for the hard 
hexagon lattice gas (c) .  
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Figure 2. Scaling of the free energy levels with the strip width L in the Ising universality. 
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Figure 3. As in figure 2 for the q = 3 Potts universality. 
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Table 1. Models and lattices studied in this paper and their critical couplings. The last 
two lines give the correlation exponents estimated through finite-size scaling of the free 
energy levels. 

~~~~ ~ ~ ~ ~~ 

Model king s =+ king s = $  Ising s = 1 Hard square 

Lattice Square Triangular Square Square 
Transfer matrix ( a )  ( b )  ( a )  ( a )  
K , ,  zc + I n ( l + & )  ;In3 0.590 48 3.7962 
17 0.2499 0.2500 0.2499 0.2500 
TEE 2.0028 2.0000 1.9974 2.0000 

Model Potts q = 3 Potts q = 3 Hard hexagon 

Lattice Square Triangular Triangular 

K , ,  zc In( 1 +&) ln(2 cos n / 9 )  $ (  1 1  +5&) 
17 

Transfer matrix ( a )  ( b )  ( C )  

0.2700 0.269 - 
TEE 1.738 1.723 - 

by an asterisk. In figures 2 and 3 we have collected all the results obtained for the 
singular part of the free energy levels A( L) - B as functions of L-* in the Ising and 
q = 3 Potts universality, respectively. 

3. Discussion 

According to (1.8) and ( 1 . 5 ) ,  the universal amplitude of the correlation length is 
given by ( A o - A j ) - '  at the critical point. An heuristic argument (Pichard and Sarma 
1981; see also Luck 1982, Derrida and de Skze 1982, Nightingale and Blote 1983, 
Penson and Kolb 1984) and conformal covariance may be used to show (Cardy 1984) 
that this amplitude is related to the decay exponent vj of the corresponding correlation 
function through 

(3 .1)  
where j = 1 corresponds to the spin-spin correlations ( = 7 = d + 2 - 2yh) and j = 2 
to the energy-energy correlations ( v 2  = TEE = d + 2 - 2y,) so that the knowledge of the 
first three energy levels is sufficient to obtain the thermal and magnetic exponents. 
The values obtained in this way are given in table 1. They are to be compared with 
the known exact values (see for example Wu 1982): 

A - A . =  o J V j  

77 = 0.25 V E E = ~  (Ising) (3.2) 

7 = = 0.2667 TEE = 1.6 (Potts q = 3) .  (3.3) 

The agreement is excellent in the Ising universality but wider strips would be necessary 
to improve the Potts results. 

The 1/L expansion of the free energy per site has been given by Ferdinand and 
Fisher (1969) for the spin-f Ising model on the square lattice with periodic boundary 
conditions and reads 

fo( L) = (2G/ T )  +; In 2 + ( T/ 12)L-2+ O( L-4 ln3( L)) (3.4) 
where G = ( 1 / 1 2 )  - (1/32) + ( w2) -. . . = 0.915 965 594, which is Catalan's constant. It 
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Table 2. Universal amplitudes A, of the free energy levels and free energy per site B, 
deduced from the eigenvalues A, of the transfer matrix on strips with width N and periodic 
boundary conditions at the critical point. 

Ising s = t square 

N - 1 , N  A, AI A2 BO Bl B2 

5 , 6  0.256 993 -0.518 074 -6.207 061 0.929 734 0.929 651 0.931 232 
6 7  0.258 325 -0.519611 -6.152 230 0.929716 0.929672 0.930470 
7 , 8  0.259 174 -0.520 587 -6.1 18 707 0.929 707 0.929 682 0.930 128 
Extrap 0.2617 -0.5235 -6.0304 0.929 70 0.929 70 0.929 71 

Ising s = f triangular 

~ ~ ~~~ 

5 , 6  0.262 184 -0.523 996 -6.026 930 0.879 578 0.879 593 0.879 689 
6 7  0.261 988 -0.523 793 -6.024 183 0.879 583 0.879 588 0.879 623 
7 , 8  0.261 904 -0.523 706 -6.022 948 0.879 584 0.879 586 0.879 601 
Extrap 0.2618 -0.5236 -6.0215 0.879 59* 0.879 58’ 0.879 59 

Ising s = 1 square 

2 , 3  0.245 899 -0.496469 -5.329075 1.318 183 1.316657 1.292 181 
394 0.253 197 -0.508610 -5.659414 1.317 778 1.317332 1.310 533 
4, 5 0.256453 -0.514 106 -5.801 069 1.317 676 1.317 503 1.314960 
Extrap 0.2618 -0.5234 -6.0132 1.3176 1.3176 1.3175 

Hard square lattice gas 
~~ ~ 

N - 1 , N  A, AI A: Bo Bl B2 

5.6 0.265 850 -0.535 305 -6.477 047 0.791 562 0.791 697 0.795 469 
6 7  0.264 548 -0.531 579 -6.333 859 0.791 580 0.791 645 0.793 480 
7, 8 0.263 805 -0.529413 -6.250318 0.791 588 0.791 623 0.792 628 
Extrap 0.2618 -0.5236 -6.0215 0.791 63 0.791 60 0.791 69 

follows that the regular part of the free energy per site is 

B = 0.929 695 398. (3.5) 

Our numerical value (table 2) is in fairly good agreement with this result. Using (3.1) 
and (3.2) one may deduce the universal amplitudes 

Ao=~/ ’12=0 .261  799388 (3.6) 

A,  = - ~ / 6  -0.523 598 776 (3.7) 

(3.8) 

which compare well with the extrapolated values of the Ising universality in table 2. 

A 2 - --a 12 T -6.021 385 920 
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Table 2. (continued) 

Potrs q = 3 square 

N - 1 , N  A0 A,  A2 BO Bl 9 2  

2,3 0.387 276 -0.423 368 -6.400 178 2.071 340 2.069 952 2.126 508 
3 , 4  0.402 139 -0.427 653 -5.659 033 2.070 514 2.070 190 2.085 333 
4, 5 0.408 635 -0.428 498 -5.376 275 2.070 31 1 2.070 216 2.076 497 
Extrap 0.4188 -0.4289 -5.0406 2.0702 2.0707* 2.0721 

Potts q = 3 triangular 

N - 1 , N  A, AI A2 Bo Bl B2 

233 0.437 749 -0.454 720 -5.699 869 1.960 837 1.963 847 2.006 725 
394 0.426 405 -0.443 318 -5.395 1 4 <  1.961 929 1.962 750 1.977 403 
495 0.422 444 -0.437 944 -5.253 002 1.962 143 1.962 459 1.969 709 
Extrap 0.4184 -0.4280 -4.9956 1.9623 1.9623 1.9647 

Hard hexagon lattice gas 

N - 2 , N  A,, BO 
~~ ~~ 

4,6  0.496 045 0.838 168 
6 ,8  0.488 519 0.838 410 
8, 10 0.466 804 0.838 801 
Extrap 0.4300* 0.8397* 

Since A. is not known in this case, the Potts results provide estimates for the 
universal amplitudes in the q = 3 Potts universality: 

A, -0.4285 * 0.005 (3.10) 

A2 = -5.0 * 0.4. (3.11) 

The hard hexagon results, which could not be correctly extrapolated, were not taken 
into account there. 

Equations (3.9) and (3.10) lead to A,,, = A,-A, =0.847*0.01, in good agreement 
with the estimate of Nightingale and Blote (1983) A, = = 0.843, and with the conjec- 
tured exact result A,,, = 0.837 76. 
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